The set
[1,2,3,…,n]
contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the k th permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
[Thoughts] 两个解法。 第一,DFS 递归遍历所有可能,然后累加计算,直至到K为止。 第二,数学解法。 假设有n个元素,第K个permutation是 a1, a2, a3, ..... ..., an 那么a1是哪一个数字呢? 那么这里,我们把a1去掉,那么剩下的permutation为 a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共有(n-1)!组排列,那么这里就可以知道 设变量K1 = K a1 = K1 / (n-1)! 同理,a2的值可以推导为 a2 = K2 / (n-2)! K2 = K1 % (n-1)! ....... a(n-1) = K(n-1) / 1! K(n-1) = K(n-2) /2! an = K(n-1) 实现如下: 1: string getPermutation(int n, int k) { 2: vector nums(n); 3: int permCount =1; 4: for(int i =0; i< n; i++) 5: { 6: nums[i] = i+1; 7: permCount *= (i+1); 8: } 9: // change K from (1,n) to (0, n-1) to accord to index 10: k--; 11: string targetNum; 12: for(int i =0; i< n; i++) 13: { 14: permCount = permCount/ (n-i); 15: int choosed = k / permCount; 16: targetNum.push_back(nums[choosed] + '0'); 17: //restruct nums since one num has been picked 18: for(int j =choosed; j< n-i; j++) 19: { 20: nums[j]=nums[j+1]; 21: } 22: k = k%permCount; 23: } 24: return targetNum; 25: }